Search for Single Top Quark Production at DØ in Run II

Reinhard Schwienhorst

Columbia University Nuclear/Particle & Astroparticle Seminar, 4/27/2005

Outline

- Introduction
 - Top quark
 - Electroweak top quark production
- The DØ experiment at the Tevatron
- Search for single top at DØ
 - Event selection
 - Discriminating variables
 - Final analysis method
 - Cut-based analysis
 - Neural network analysis
 - Decision Tree analysis
- Conclusions/Outlook

Top Quark

Charge

Charge

 $+\frac{2}{3}$

- Discovered in 1995 by CDF and DØ at the Tevatron
- Heaviest of all fermions
 - 40 times heavier than b quark
- Only quark that decays before it hadronizes
 - Clean laboratory to study quark properties
- Couples strongly to SM Higgs boson
 - Electroweak symmetry breaking

-1/3

Fundamental Interactions

- Strong force
 - Top quark production in hadron colliders

- Electroweak neutral current
 - Top quark production in lepton colliders

$$e^+$$
 ψZ t

Top quark pair creation

Top Quark Interactions

- Electroweak charged current
 - So far, we only really know that it does decay

Top quark decay

- Electroweak charged current also responsible for nuclear Beta decay

Top Quark Electroweak Interaction

Wtb vertex has many angles

s-channel

s-channel

$O(\alpha_s)$ corrections:

- Observe single top quark production
- Measure production cross sections $\rightarrow V_{tb}$
 - Separately for s-channel and t-channel

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} \mathbf{CKMIMatrix} \\ V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} \begin{pmatrix} \mathbf{V}_{b} \\ \mathbf{V}_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Weak interaction eigenstates are not mass eigenstates Top quark must decay to a W plus a d, s, or b quark

$$V_{td}^2 + V_{ts}^2 + V_{tb}^2 = 1$$
 \longrightarrow $V_{tb} > 0.999$

New physics that couples to the top quark:

$$V_{td}^2 + V_{ts}^2 + V_{tb}^2 + V_{tx}^2 = 1$$

Only weak constraints on V_{tb}

- Observe single top quark production
- Measure production cross sections
 - CKM matrix element V_{tb}
- Look for physics beyond the Standard Model
 - Different sensitivity for s-channel and t-channel

- Observe single top quark production
- Measure production cross sections
 - CKM matrix element V_{tb}
- Look for physics beyond the Standard Model
- Study top quark spin correlations probe V-A
 - Physics with ~100% polarized top quarks

- Observe single top quark production
- Measure production cross sections
 - CKM matrix element V_{tb}
- Look for physics beyond the Standard Model
- Study top quark spin correlations probe V-A
- Irreducible background to associated Higgs production

Gateway to the Higgs

Single Top Status

• Production cross section:

	s-channel	t-channel	s+t
NLO calculation:	0.88pb (±8%)	1.98pb (±11%)	
– Run I 95% CL limits, DØ:	< 17pb	< 22pb	
CDF:	< 18pb	< 13pb	< 14pb
- Run II CDF 95% CL limits:	< 14pb	< 10pb	< 18pb

• Other Standard Model production mode (Wt) negligible

Discovery of Single Top?

- Excess of lepton+MET+2jet events at UA1 in 1984
 - Consistent with production of single top quark and bottom

Discovery of Single Top?

• Excess of lepton+MET+2jet events at UA1 in 1984

- Consistent with production of single top quark and bottom

quark

• $M_{top} \approx 40 \text{GeV}$

 Not confirmed after more data and better background estimation

• W+jets production!

m ($[v_1]$, $[v_2]$, GeV/ c^2

Single Top at LEP and Hera: FCNC

• LEP:

$$-e^+e^- \rightarrow tc$$

• Hera:

$$-ep \rightarrow et$$

Experimental Detection of Single Top Events

Experimenters

- → 19 countries
- → 80 institutions
- → 670 physicists

- Multi-level, pipelined, buffered Trigger Strategy
 - Level 1: one interaction every 396ns
 - Fast trigger pick-offs from all detectors
 - Trigger on hit patters in individual detector elements
 - Level 2: Combine Level 1 regions and objects
 - Custom dataflow hardware/firmware
 - Event reconstruction on Pentium CPUs
 - Level 3: Full detector readout
 - Complete event reconstruction on Linux processor farm

Dataset

Analysis Outline

Goal:

Maximize Sensitivity

1. Event Selection

- Select W-like events
- Maximize acceptance
- Model backgrounds

2. Separate signal from backgrounds

- Find discriminating variables
- Cut/combine in multivariate analysis

3. Determine cross section

- Event counting
- Binned likelihood

Event Selection

• Trigger:

- Electron + \geq 1 jets, muon + \geq 1 jets
- Lepton:
 - 1 electron: $p_{\rm T} > 15 {\rm GeV}$, $|\eta^{\rm det}| < 1.1$
 - $-1 \text{ muon: } p_{\text{T}} > 15 \text{GeV}, |\eta^{\text{det}}| < 2.0$

$$-p_T > 15 \text{GeV}, |\eta^{\text{det}}| < 3.4, p_T (\text{jet } 1) > 25 \text{GeV}$$

$$-2 \le n_{\text{jets}} \le 4$$

Reject mis-reconstructed events

Event Selection: b-tagging

Algorithm: Secondary Vertex Tag

- Final state:
 - -2 high- p_T b-jets
- → Require ≥1 b-tagged jet

- Final state:
 - -1 high- p_T b-jet
 - -1 high- p_T light quark jet
- → Require ≥1 b-tagged jet
- → Require ≥1 untagged jet

Background Modeling

- Based on data as much as possible
- W/Z+jets production
 - Estimated from MC/data
 - Distributions from MC
 - Normalization from pre-tagged sample
 - Flavor fractions from NLO
- Multijet events (misidentified lepton)
 - Estimated from data
- Top pair production
 - Estimated from MC
- Diboson (WZ, WW)
 - Estimated from <u>MC</u>

Event Yield

	s-channel	t-channel
Cut acceptance	23%	22%
b-tag efficiency	54%	38%
Signal yield	5.5	8.5
BKgnd yield	287	276
Signal/bkgnd	1:52	1:32

Pre-tagged 7100 events

=1 b-tag 252 events

Systematic Uncertainties

Monte Carlo Systematic Uncertainties				
Theory cross sections	15 %			
SVT modeling, single (double) tag	${f 10\%}({f 20\%})$			
Jet Energy Scale	10 %			
Trigger Modeling	$oldsymbol{6}\%$			
Jet Fragmentation	$oldsymbol{6}\%$			
Jet ID	$oldsymbol{5}\%$			
ℓ ID	5 %			

- Some uncertainties also affect shape
 - JES, b-tag and trigger modeling
- Total Uncertainty

=1 tag ≥2 tags Signal acceptance 15% 25%

Background sum 10% 26%

Result is statistics limited

A Treasure Chest of Discriminating Variables

Object p_T

- p_T of jets:
 - Both s-channel and t-channel:
 - Jet1_{tagged}
 - Only t-channel:
 - Jet 1_{untagged}
 - Jet 2_{untagged}
 - Only s-channel:
 - Jet 1_{non-best}
 - Jet 2_{non-best}

Event Energy

- Total energy $H = \sum_{i} E^{i}$ transverse energy $H_{T} = \sum_{i} E^{i}_{T}$
 - Both s-channel and t-channel:
 - $H(\text{all jets} \text{Jet1}_{\text{tagged}})$
 - Only t-channel:
 - H_T (all jets)
 - H_T (all jets Jet1_{tagged})
 - Only s-channel:
 - *H*(all jets Jet_{best})
 - H_T (all jets Jet_{best})

Reconstructed Objects

- Both s-channel and t-channel:
 - *M*(all jets)
 - $p_T(\text{all jets} \text{Jet1}_{\text{tagged}})$
 - $M(top_{tagged})$
 - √ŝ
- Only t-channel:
 - $M(\text{all jets Jet1}_{\text{tagged}})$
- Only s-channel:
 - $M_T(\text{Jet1}, \text{Jet2})$
 - $p_T(\text{Jet1}, \text{Jet2})$
 - $M(\text{all jets} \text{Jet1}_{\text{best}})$
 - $M(top_{best})$

Angular Correlations

- Both s-channel and t-channel:
 - Δ R(Jet1, Jet2)
- Only t-channel:
 - $\eta(\text{Jet1}_{\text{untagged}}) \times Q(\text{lepton})$
 - cos(lepton, Jet1_{untagged})_{toptagged}
 - Spin correlation in optimal basis
 - cos(all jets, Jet1_{tagged})_{all jets}
- Only s-channel:
 - $cos(lepton, Q(lepton) \times z)_{top_{best}}$
 - Spin correlation in optimal basis
 - cos(all jets, Jet1_{non-best})_{all jets}

Separating Signal from Backgrounds

Three analysis methods

Cut-Based

Neural Networks

Decision Trees

- Each using the same structure:
 - Optimize separately for s-channel and t-channel
 - Optimize separately for electron and muon channel (same variables)
 - Focus on dominant backgrounds: W+jets, tt
 - W+jets train on tb-Wbb and tqb-Wbb
 - tt train on tb tt $\rightarrow l$ + jets and tqb tt $\rightarrow l$ + jets
 - Based on same set of discriminating variables
 - → 8 separate sets of cuts/networks/trees

1. Cut-Based Analysis

1. Cut-Based Analysis

- Cuts on sensitive variables to isolate single top
 - Optimize s-channel and t-channel searches separately
 - Loose cuts on energy-related variables:

```
p_T (jet1<sub>tagged</sub>)
H(alljets - jet1<sub>tagged</sub>)
H(alljets - jet1<sub>best</sub>)
H_T(alljets)
M(top<sub>tagged</sub>)
M(alljets)
M(alljets - jet1<sub>tagged</sub>)
\sqrt{\$}
```

	Event Yields		
	s-channel t-channe		
	search	search	
s-channel signal	4.5	3.2	
t-channel signal	5.5	7	
W+jets	103	73	
top pairs	28	56	
multijet	17	17	
Background sum	153 ± 25	149±25	
Observed	152	148	
Signal/Bkgnd	1:34	1:21	

Result

- No evidence for single top signal
 - → Set 95% CL upper cross section limit
 - Using Bayesian approach
 - Combine all analysis channels (e, μ , =1 tag, ≥2 tags)
 - Take systematics and correlations into account

Expected limit: set N_{obs} to background yield

2. Neural Network Analysis

Neural Networks

Neural Network Filters

- Focus on the largest backgrounds: Wbb and $tt \rightarrow l+jets$
- Same variables for electron and muon channel
- Same filter for =1 tag and \geq 2 tags

Neural Network Output

Result

- No evidence for single top signal
 - → Set 95% CL upper cross section limit
 - Using Bayesian approach and binned likelihood
 - Including bin-by-bin systematics and correlations

Result

Expected/Observed limit: $\sigma_{s} < 4.5 / 6.4 \text{ pb}$ $\sigma_{t} < 5.8 / 5.0 \text{ pb}$

- Most sensitive analysis method
- Improvement compared to cut-based analysis due to:
 - Multivariate analysis
 - Binned likelihood fit

3. Decision Tree Analysis

3. Decision Tree Analysis

- For each event, gives probability for an event to be signal
- Widely used in social sciences, recently also in HEP
 - GLAST, Miniboone object ID (see Byron Roe W&C)

- Send each event down the tree
- Each node corresponds to a cut
 - Pass cut (P): right
 - Fail cut (F): left
- A leaf corresponds to a node without branches
 - Defines purity = $N_S/(N_S+N_B)$
- Training: optimize Gini improvement

$$- Gini = 2 N_S N_B / (N_S + N_B)$$

Output: purity for each event

Result

- No evidence for single top signal
 - → Set 95% CL upper cross section limits
 - Same Bayesian likelihood approach as NN analysis

Sensitivity comparable to Neural Network analysis

Summary

s-channel t-channel

NLO cross section

0.88 pb 1.98 pb

95% CL upper cross section limits [pb]

DØ Run I	17	22
CDF Run II (160pb ⁻¹)	13.6	10.1
This analysis (230pb ⁻¹)		
cut-based	10.6	11.3
DTs & binned likelihood	8.3	8.1
NNs & binned likelihood	6.4	5

Sensitivity to non-SM Single Top

Tevatron Single Top Prospects

- Observe single top production in Run II
 - Observe new physics (if it's there)
- Measure V_{tb} to ~10%

Conclusions

- DØ Run II single top analysis with 230pb⁻¹ completed
 - Detector, trigger, software etc working and understood
 - -95% CL cross section limits of $\sigma_s < \underline{6.4 \text{ pb}}$, $\sigma_t < \underline{5.0 \text{ pb}}$
 - Factor 2 improvement over previous limits
 - Reaching sensitivity to new physics
- Single Top is an exciting opportunity for Run II
 - New and old (SM) physics
- This is just the beginning
 - Expect ×3 dataset by end of year
 - Improve all aspects of the analysis

Dawn of Run II Discoveries

Backup Slides

Ensemble Tests

- Limits from pseudo-experiments
 - Vary count in each bin according to Poisson distribution

Decision Tree Output

Follow NN approach closely: Same configuration, samples, variables

Cut-Based Analysis Details

s-channel			t-channel	
<i>α</i> 1 1		~		a .
Channel	Variables	Cuts	Variables	Cuts
${f Electron}$				
=1 Tag	$p_T(\mathrm{jet1}_{\mathrm{tagged}})$	$> 27 \mathrm{GeV}$	$H_T({ m alljets})$	$>71~{ m GeV}$
	$M(\text{alljets} - \text{jet1}_{\text{tagged}})$	$< 70 \mathrm{GeV}$	$M(ext{alljets})$	$> 57~{ m GeV}$
	$\sqrt{\hat{s}}$	$> 196~{ m GeV}$	$\sqrt{\hat{s}}$	$>203~{ m GeV}$
			$ 175 - M(\text{top}_{\text{tagged}}) $	$< 57~{ m GeV}$
			$p_T(\mathrm{jet1}_{\mathrm{tagged}})$	$> 21~{ m GeV}$
$\geq 2 \text{ Tags}$	$p_T(\text{jet1}_{\text{tagged}})$	$>42~{ m GeV}$	$p_T(\text{jet1}_{\text{tagged}})$	$>34~{ m GeV}$
	$M(\text{alljets} - \text{jet1}_{\text{tagged}})$	$< 98~{ m GeV}$	$M(\text{alljets} - \text{jet1}_{\text{tagged}})$	$<75~\mathrm{GeV}$
	$H(\text{alljets} - \text{jet1}_{\text{tagged}})$	$< 304~{ m GeV}$	$H(\text{alljets} - \text{jet1}_{\text{tagged}})$	$< 504~{ m GeV}$
	$H(\text{alljets} - \text{jet}_{\text{best}})$	$< 304 \mathrm{GeV}$	$H(\text{alljets} - \text{jet}_{\text{best}})$	$< 504 \mathrm{GeV}$
\mathbf{Muon}				
=1 Tag	$p_T(\mathrm{jet1}_{\mathrm{tagged}})$	$>33~{ m GeV}$	$ 175 - M(top_{tagged}) $	$< 60~{ m GeV}$
	$M(\text{alljets} - \text{jet1}_{\text{tagged}})$	$<74~{ m GeV}$	$\sqrt{\hat{s}}$	$>210~{ m GeV}$
	$H(\text{alljets} - \text{jet}1_{\text{tagged}})$	$< 504~{ m GeV}$	$M({ m alljets})$	$>70~{ m GeV}$
	$H(\text{alljets} - \text{jet}_{\text{best}})$	$< 504~{ m GeV}$	$H_T({ m alljets})$	$>58~{ m GeV}$
$\geq 2 \text{ Tags}$	$p_T(\text{jet1}_{\text{tagged}})$	$>33~{ m GeV}$	$ 175 - M(top_{tagged}) $	$< 213~{ m GeV}$
	$M(\text{alljets} - \text{jet1}_{\text{tagged}})$	$<74~{ m GeV}$		
	$H(\text{alljets} - \text{jet1}_{\text{tagged}})$	$< 504~{ m GeV}$		
	$H(\text{alljets} - \text{jet}_{\text{best}})$	$< 504~{ m GeV}$		

Variables:

	Signal-Background Pairs			
	tb		tqb	
	Wbb	$t \overline{t}$	Wbb	$t \bar t$
Individual object kinematics				
$p_T(\text{jet1}_{\text{tagged}})$	\checkmark	\checkmark	\checkmark	
$p_T(\text{jet1}_{ ext{untagged}})$			\checkmark	\checkmark
$p_T(\text{jet2}_{\text{untagged}})$				\checkmark
$p_T(\text{jet1}_{\text{nonbest}})$	\checkmark	\checkmark		
$p_T(\mathrm{jet2_{nonbest}})$	\checkmark	\checkmark	—	—
Global event kinematics				
$M_T({ m jet1,jet2})$	$\sqrt{}$			—
$p_T(\mathrm{jet1},\mathrm{jet2})$	$\sqrt{}$		$\sqrt{}$	
$M({ m alljets})$	\checkmark	\checkmark	\checkmark	\checkmark
$H_T(ext{alljets})$	_		\checkmark	
$M(\text{alljets} - \text{jetl}_{\text{tagged}})$				√,
$H(\text{alljets} - \text{jet1}_{\text{tagged}})$		\checkmark		√,
$H_T(\text{alljets} - \text{jet1}_{\texttt{tagged}})$				√.
$p_T(\text{alljets} - \text{jet1}_{\text{tagged}})$	_	$\sqrt{}$	_	\checkmark
$M(\text{alljets} - \text{jet}_{\texttt{best}})$	_	$\sqrt{}$	_	
$H(\text{alljets} - \text{jet}_{\text{best}})$		$\sqrt{}$		
$H_T(\text{alljets} - \text{jet}_{\texttt{best}})$		$\sqrt{}$		
$M(top_{tagged}) = M(W, jet1_{tagged})$	√,	\checkmark	\checkmark	\checkmark
$M(\text{top}_{\text{best}}) = M(W, \text{jet}_{\text{best}})$	\checkmark			
$\sqrt{\hat{s}}$	\checkmark		\checkmark	\checkmark
Angular variables				
$\Delta R(ext{jet1}, ext{jet2})$	\checkmark		\checkmark	
$Q(\mathrm{lepton}) imes \eta(\mathrm{jet1}_{\mathtt{untagged}})$			\checkmark	\checkmark
$\cos(\operatorname{lepton}, Q(\operatorname{lepton}) \times z)_{\operatorname{top}_{best}}$	\checkmark	_		
$\cos(\text{lepton}, \text{jet1}_{\text{untagged}})_{\text{top}_{\text{tagged}}}$	_		$\sqrt{}$	
cos(alljets, jet1 _{tagged}) _{alljets}			\checkmark	\checkmark
cos(alljets, jet _{nonbest}) _{all jets}				

Maximize Sensitivity: Final State Reconstruction

Final State Reconstruction

- Reconstruct W from lepton and E_T
- Reconstruct top quark from W and leading b-tagged jet
- Reconstruct light quark as leading untagged jet

Final State Reconstruction

s-channel

- Reconstruct W from lepton and E_T
- Reconstruct top quark from W and one of the jets using Best Jet Algorithm:
 - Pick jet for which M(W,jet) is closest to true top mass (175GeV)
- Reconstruct \overline{b} -quark as leading non-best jet

Tevatron Integrated Luminosity per year

• Tevatron delivered luminosity is exceeding "baseline" and "design" projections

Mis-reconstructed Events?

- Cosmic rays (muons)
- Mis-reconstructed vertex
 - Affects missing transverse energy
- Mis-reconstructed jets
 - fake electron
 - fake isolated muon

- → Primary vertex constraints
 - Primary vertex with ≥3 tracks
 - Lepton is required to originate from primary vertex
- → Triangle Cuts

Event Yield

 $Y = L \times \sigma \times Br \times Acc(cuts) \times Eff(b-tag)$

Acc(cuts) Eff(b-tag)

s-channel: 23% 54%

t-channel: 22% 38%

	Event Yields		
	s-channel	t-channel	
	search	search	
s-channel signal	<u>5.5</u>	4.7	
t-channel signal	8.6	<u>8.5</u>	
W+jets	169	164	
top pairs	78	76	
multijet	31	31	
Background sum	287 ± 44	276±41	
Observed	283	271	

Signal Modeling

- CompHEP-based generator
 - Includes $O(\alpha_s)$ diagrams \rightarrow reproduces NLO distributions
 - Including top quark spin correlations
- Normalize to NLO cross sections

• t-channel: match $2\rightarrow 3$ and $2\rightarrow 2$ processes

Single Top – Expectation

- Predictions for Run II were to be sensitive to single top production with ~500pb⁻¹ Where is it?
 - Observation with 2fb⁻¹
 - Starting to be interesting much sooner
- We have recorded >400pb at DØ already
 - -Observation soon?

Stelzer, Sullivan, Willenbrock, PRD58 (98)

Single Top – Expectation vs Reality

• Predictions for Run II were to be sensitive to single top production with ~500pb⁻¹ – Where is it?

Detector performance
 not (yet) as good as expected

• b-tagging ~45% per jet

• Trigger, ID <100%

Jet resolution not (yet) as good as expected

 W+jets background larger than expected

• NLO calculations: LO×1.5

- Top mass, gluon PDF, ...

Many effects, all in the wrong direction $\begin{bmatrix} 0 \\ 100 \end{bmatrix}$

Level 2 Trigger

- Design: reduce 6kHz L1 accept rate to 1kHz
- Both custom hardware/firmware and commodity-based components
 - Dataflow from L1 and detector systems in custom systems
 - Algorithms in software running on commodity-based system
- Build Physics objects
 - Jets and EM objects are built from L1 calorimeter towers
 - Central tracks are built from L1 track trigger tracks
 - Now also Secondary Vertex Tagging
 - Muons are reconstructed from raw muon chamber hits
- Combine objects from different detector systems
 - Track matching to muons, electrons, or jets
- Allow for 128 different combinations
 - 1-1 matching of bits between L1 and L2

Trigger Level 1/Level 2 Dataflow

Trigger Hardware: Custom-built vs Commodity

- Trigger Level 1/Level 2 relies heavily on custom-built hardware/firmware
 - Cards designed/built mostly by Engineers feedback from Physicists
 - Systems commissioned mostly by Physicists help from Engineers
 - Firmware written by Engineers/Physicists
 - Most Firmware tasks too complex to be written by Physicists alone
- Trigger Level 2/Level 3 relies heavily on commodity

systems

- Off-the-shelf products (computers, interfaces/cables)
- Interfaced to custom-built cards
- Software written by Physicists

Top Quark Spin

- Top Quark decays before it hadronizes
 - Full spin information is preserved in the decay products
 - Electroweak charged current interaction is left-handed
- Top polarization in the top rest frame:

Quark Charged Current Interactions

Observed and studied in particle decays

• Direct production of real W boson

Virtual corrections to electroweak processes

Tevatron Top Physics

Top Pair Production at a Proton-Antiproton collider

- Top Pair Studies at the Tevatron
 - Production cross section
 - Top mass
 - Implications for Standard Model Higgs ≥
 - Look for new Physics
 - In top production and decay
 - Many more

Relative Contributions to NLO rate including Top Production and Decay

	s-channel	t-channel			
	NLO rate	0.86pb		NLO rate	1.9pb
\m\<	Born level	65%		Born level	105%
	Initial state	22%	3	Light quark	13%
>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Final state	11.5%		Heavy quark	-11%
> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Decay	1.2%		Decay	-7%
Cao, RS, Yuan h	ep-ph/0409040		n		

- O(as) corrections large for the s-channel
 - Only small rate correction for the t-channel
 - Decay correction is 2nd order effect, top mass and top width

Kinematic effect of $O(\alpha_s)$ Corrections

- After simple parton level selection cuts:
 - 1 lepton, $p_T>15GeV$, $|\eta|<2$, missing $E_T>15GeV$
 - ≥2 jets, $p_T>15GeV$, |η|<3
- Example: s-channel jet multiplicity

Cao, RS, Yuan hep-ph/0409040

Single Top t-channel at NLO

- Large number of 3-jet events
 - Depends strongly on jet p_T and η cuts

Tevatron Single Top Quark Production

Tevatron Single Top Quark Production

